Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transdimensional inversion of receiver functions and surface wave dispersion

Identifieur interne : 005568 ( Main/Exploration ); précédent : 005567; suivant : 005569

Transdimensional inversion of receiver functions and surface wave dispersion

Auteurs : T. Bodin [Australie] ; M. Sambridge [Australie] ; H. Tkal I [Australie] ; P. Arroucau [États-Unis] ; K. Gallagher [France] ; N. Rawlinson [Australie]

Source :

RBID : ISTEX:31ED01A1129DBF445173C8C77E9ACB291D43297B

Descripteurs français

English descriptors

Abstract

We present a novel method for joint inversion of receiver functions and surface wave dispersion data, using a transdimensional Bayesian formulation. This class of algorithm treats the number of model parameters (e.g. number of layers) as an unknown in the problem. The dimension of the model space is variable and a Markov chain Monte Carlo (McMC) scheme is used to provide a parsimonious solution that fully quantifies the degree of knowledge one has about seismic structure (i.e constraints on the model, resolution, and trade‐offs). The level of data noise (i.e. the covariance matrix of data errors) effectively controls the information recoverable from the data and here it naturally determines the complexity of the model (i.e. the number of model parameters). However, it is often difficult to quantify the data noise appropriately, particularly in the case of seismic waveform inversion where data errors are correlated. Here we address the issue of noise estimation using an extended Hierarchical Bayesian formulation, which allows both the variance and covariance of data noise to be treated as unknowns in the inversion. In this way it is possible to let the data infer the appropriate level of data fit. In the context of joint inversions, assessment of uncertainty for different data types becomes crucial in the evaluation of the misfit function. We show that the Hierarchical Bayes procedure is a powerful tool in this situation, because it is able to evaluate the level of information brought by different data types in the misfit, thus removing the arbitrary choice of weighting factors. After illustrating the method with synthetic tests, a real data application is shown where teleseismic receiver functions and ambient noise surface wave dispersion measurements from the WOMBAT array (South‐East Australia) are jointly inverted to provide a probabilistic 1D model of shear‐wave velocity beneath a given station.

Url:
DOI: 10.1029/2011JB008560


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transdimensional inversion of receiver functions and surface wave dispersion</title>
<author>
<name sortKey="Bodin, T" sort="Bodin, T" uniqKey="Bodin T" first="T." last="Bodin">T. Bodin</name>
</author>
<author>
<name sortKey="Sambridge, M" sort="Sambridge, M" uniqKey="Sambridge M" first="M." last="Sambridge">M. Sambridge</name>
</author>
<author wicri:is="90%">
<name sortKey="Tkal I, H" sort="Tkal I, H" uniqKey="Tkal I H" first="H." last="Tkal I">H. Tkal I</name>
</author>
<author wicri:is="90%">
<name sortKey="Arroucau, P" sort="Arroucau, P" uniqKey="Arroucau P" first="P." last="Arroucau">P. Arroucau</name>
</author>
<author>
<name sortKey="Gallagher, K" sort="Gallagher, K" uniqKey="Gallagher K" first="K." last="Gallagher">K. Gallagher</name>
</author>
<author>
<name sortKey="Rawlinson, N" sort="Rawlinson, N" uniqKey="Rawlinson N" first="N." last="Rawlinson">N. Rawlinson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:31ED01A1129DBF445173C8C77E9ACB291D43297B</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1029/2011JB008560</idno>
<idno type="url">https://api.istex.fr/document/31ED01A1129DBF445173C8C77E9ACB291D43297B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000948</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000948</idno>
<idno type="wicri:Area/Istex/Curation">000948</idno>
<idno type="wicri:Area/Istex/Checkpoint">000493</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000493</idno>
<idno type="wicri:doubleKey">0148-0227:2012:Bodin T:transdimensional:inversion:of</idno>
<idno type="wicri:Area/Main/Merge">005835</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:12-0253616</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001279</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004C37</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000C32</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000C32</idno>
<idno type="wicri:doubleKey">0148-0227:2012:Bodin T:transdimensional:inversion:of</idno>
<idno type="wicri:Area/Main/Merge">005A67</idno>
<idno type="wicri:Area/Main/Curation">005568</idno>
<idno type="wicri:Area/Main/Exploration">005568</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Transdimensional inversion of receiver functions and surface wave dispersion</title>
<author>
<name sortKey="Bodin, T" sort="Bodin, T" uniqKey="Bodin T" first="T." last="Bodin">T. Bodin</name>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Earth Sciences, Australian National University, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Sambridge, M" sort="Sambridge, M" uniqKey="Sambridge M" first="M." last="Sambridge">M. Sambridge</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Earth Sciences, Australian National University, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Tkal I, H" sort="Tkal I, H" uniqKey="Tkal I H" first="H." last="Tkal I">H. Tkal I</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Earth Sciences, Australian National University, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Arroucau, P" sort="Arroucau, P" uniqKey="Arroucau P" first="P." last="Arroucau">P. Arroucau</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gallagher, K" sort="Gallagher, K" uniqKey="Gallagher K" first="K." last="Gallagher">K. Gallagher</name>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Géosciences Rennes, Université de Rennes 1, Rennes</wicri:regionArea>
<placeName>
<region type="region">Région Bretagne</region>
<region type="old region">Région Bretagne</region>
<settlement type="city">Rennes</settlement>
<settlement type="city">Rennes</settlement>
</placeName>
<orgName type="university">Université de Rennes 1</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rawlinson, N" sort="Rawlinson, N" uniqKey="Rawlinson N" first="N." last="Rawlinson">N. Rawlinson</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Earth Sciences, Australian National University, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">117</biblScope>
<biblScope unit="issue">B2</biblScope>
<biblScope unit="page-count">24</biblScope>
<date type="published" when="2012-02">2012-02</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acceptance probability</term>
<term>Acceptance term</term>
<term>Agostinetti</term>
<term>Algorithm</term>
<term>Ambient</term>
<term>Ammon</term>
<term>Australia</term>
<term>Average solution</term>
<term>Average solution model</term>
<term>Bayes</term>
<term>Bayesian</term>
<term>Bayesian approach</term>
<term>Bayesian formulation</term>
<term>Bayesian framework</term>
<term>Bayesian inference</term>
<term>Birth step</term>
<term>Blue line</term>
<term>Bodin</term>
<term>Carlo</term>
<term>Complexity</term>
<term>Computational</term>
<term>Constraint</term>
<term>Correlation function</term>
<term>Covariance</term>
<term>Covariance matrix</term>
<term>Crust</term>
<term>Crustal</term>
<term>Crustal structure</term>
<term>Current model</term>
<term>Data errors</term>
<term>Data noise</term>
<term>Data noise covariance matrix</term>
<term>Data sets</term>
<term>Data type</term>
<term>Data uncertainty</term>
<term>Data vector</term>
<term>Data vectors</term>
<term>Deconvolution</term>
<term>Determinant</term>
<term>Dettmer</term>
<term>Different data types</term>
<term>Different values</term>
<term>Discontinuity</term>
<term>Dispersion</term>
<term>Dispersion data</term>
<term>Dobs</term>
<term>Earth models</term>
<term>Earth planet</term>
<term>Earth sciences</term>
<term>Electromagnetic data</term>
<term>Ensemble</term>
<term>Ensemble solution</term>
<term>Exponential</term>
<term>Exponential correlation</term>
<term>First type</term>
<term>Frequency domain deconvolution</term>
<term>Gallagher</term>
<term>Gaussian</term>
<term>Gaussian correlation</term>
<term>Gaussian filter</term>
<term>Geoacoustic inversion</term>
<term>Geophys</term>
<term>Geophysical</term>
<term>Geophysical inversion</term>
<term>Geophysics</term>
<term>Hierarchical</term>
<term>Hierarchical bayes</term>
<term>Hierarchical bayes inversion</term>
<term>Hierarchical bayes procedure</term>
<term>Histogram</term>
<term>Interface</term>
<term>Inverse problem</term>
<term>Inversion</term>
<term>Inverted</term>
<term>Jacobian</term>
<term>Jacobian term</term>
<term>Jcej</term>
<term>Joint inversion</term>
<term>Joint inversions</term>
<term>Kennett</term>
<term>Large number</term>
<term>Layer</term>
<term>Lett</term>
<term>Lithospheric structure</term>
<term>Malinverno</term>
<term>Marginal distribution</term>
<term>Markov</term>
<term>Markov chain</term>
<term>Markov chain analysis</term>
<term>Markov chain monte carlo</term>
<term>Matrix</term>
<term>Maximum solution</term>
<term>Maximum solution model</term>
<term>Misfit</term>
<term>Misfit function</term>
<term>Model parameter</term>
<term>Model parameters</term>
<term>Model space</term>
<term>Modelling</term>
<term>Moho</term>
<term>Monte Carlo analysis</term>
<term>Neighborhood algorithm</term>
<term>Noise</term>
<term>Noise correlation</term>
<term>Noise covariance</term>
<term>Noise estimates</term>
<term>Noise parameterization</term>
<term>Noise parameters</term>
<term>Objective function</term>
<term>Optimization</term>
<term>Parameter</term>
<term>Parameterization</term>
<term>Parameterized</term>
<term>Partial derivatives</term>
<term>Perturbed</term>
<term>Piana</term>
<term>Piana agostinetti</term>
<term>Posterior</term>
<term>Posterior distribution</term>
<term>Posterior distributions</term>
<term>Posterior inference</term>
<term>Posterior probability</term>
<term>Posterior probability distribution</term>
<term>Probability density</term>
<term>Probability distribution</term>
<term>Proposal distribution</term>
<term>Proposal distributions</term>
<term>Proposal ratio</term>
<term>Rawlinson</term>
<term>Receiver function</term>
<term>Receiver function analysis</term>
<term>Receiver functions</term>
<term>Residual</term>
<term>Reversible jump algorithm</term>
<term>S-waves</term>
<term>Sambridge</term>
<term>Second type</term>
<term>Seismic</term>
<term>Seismic structure</term>
<term>Seismic tomography</term>
<term>Seismol</term>
<term>Shear wave velocity</term>
<term>Station pairs</term>
<term>Surface wave dispersion</term>
<term>Surface wave dispersion data</term>
<term>Surface wave dispersion measurements</term>
<term>Surface waves</term>
<term>Synthetic data</term>
<term>Synthetic experiments</term>
<term>Synthetic noise</term>
<term>Teleseismic</term>
<term>Teleseismic receiver functions</term>
<term>Theory errors</term>
<term>Time series</term>
<term>Tomography</term>
<term>Trade wind</term>
<term>Transdimensional</term>
<term>Transdimensional inversion</term>
<term>True model</term>
<term>Uniform distribution</term>
<term>Upper mantle</term>
<term>Variable number</term>
<term>Variance</term>
<term>Velocity model</term>
<term>Velocity value</term>
<term>Velocity values</term>
<term>Vertical component</term>
<term>Visual inspection</term>
<term>Voronoi</term>
<term>Voronoi nuclei</term>
<term>Wave velocity</term>
<term>Waveform</term>
<term>Weighting</term>
<term>Wide range</term>
<term>algorithms</term>
<term>covariance</term>
<term>errors</term>
<term>inverse problem</term>
<term>joints</term>
<term>noise</term>
<term>one-dimensional models</term>
<term>solution</term>
<term>surface waves</term>
<term>uncertainties</term>
<term>wave dispersion</term>
<term>waveforms</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Algorithme</term>
<term>Alizé</term>
<term>Analyse Chaîne Markov</term>
<term>Australie</term>
<term>Bruit</term>
<term>Chaîne Markov</term>
<term>Complexité</term>
<term>Covariance</term>
<term>Diaclase</term>
<term>Dispersion onde</term>
<term>Erreur</term>
<term>Forme onde</term>
<term>Incertitude</term>
<term>Matrice covariance</term>
<term>Modèle 1 dimension</term>
<term>Méthode Monte Carlo</term>
<term>Onde S</term>
<term>Onde surface</term>
<term>Pondération</term>
<term>Problème inverse</term>
<term>Solution</term>
<term>Variance</term>
<term>Vitesse onde</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acceptance probability</term>
<term>Acceptance term</term>
<term>Agostinetti</term>
<term>Algorithm</term>
<term>Ambient</term>
<term>Ammon</term>
<term>Average solution</term>
<term>Average solution model</term>
<term>Bayes</term>
<term>Bayesian</term>
<term>Bayesian approach</term>
<term>Bayesian formulation</term>
<term>Bayesian framework</term>
<term>Bayesian inference</term>
<term>Birth step</term>
<term>Blue line</term>
<term>Bodin</term>
<term>Carlo</term>
<term>Computational</term>
<term>Constraint</term>
<term>Correlation function</term>
<term>Covariance</term>
<term>Covariance matrix</term>
<term>Crust</term>
<term>Crustal</term>
<term>Crustal structure</term>
<term>Current model</term>
<term>Data errors</term>
<term>Data noise</term>
<term>Data noise covariance matrix</term>
<term>Data sets</term>
<term>Data type</term>
<term>Data uncertainty</term>
<term>Data vector</term>
<term>Data vectors</term>
<term>Deconvolution</term>
<term>Determinant</term>
<term>Dettmer</term>
<term>Different data types</term>
<term>Different values</term>
<term>Discontinuity</term>
<term>Dispersion</term>
<term>Dispersion data</term>
<term>Dobs</term>
<term>Earth models</term>
<term>Earth planet</term>
<term>Earth sciences</term>
<term>Electromagnetic data</term>
<term>Ensemble</term>
<term>Ensemble solution</term>
<term>Exponential</term>
<term>Exponential correlation</term>
<term>First type</term>
<term>Frequency domain deconvolution</term>
<term>Gallagher</term>
<term>Gaussian</term>
<term>Gaussian correlation</term>
<term>Gaussian filter</term>
<term>Geoacoustic inversion</term>
<term>Geophys</term>
<term>Geophysical</term>
<term>Geophysical inversion</term>
<term>Geophysics</term>
<term>Hierarchical</term>
<term>Hierarchical bayes</term>
<term>Hierarchical bayes inversion</term>
<term>Hierarchical bayes procedure</term>
<term>Histogram</term>
<term>Interface</term>
<term>Inverse problem</term>
<term>Inversion</term>
<term>Inverted</term>
<term>Jacobian</term>
<term>Jacobian term</term>
<term>Jcej</term>
<term>Joint inversion</term>
<term>Joint inversions</term>
<term>Kennett</term>
<term>Large number</term>
<term>Layer</term>
<term>Lett</term>
<term>Lithospheric structure</term>
<term>Malinverno</term>
<term>Marginal distribution</term>
<term>Markov</term>
<term>Markov chain monte carlo</term>
<term>Matrix</term>
<term>Maximum solution</term>
<term>Maximum solution model</term>
<term>Misfit</term>
<term>Misfit function</term>
<term>Model parameter</term>
<term>Model parameters</term>
<term>Model space</term>
<term>Modelling</term>
<term>Moho</term>
<term>Neighborhood algorithm</term>
<term>Noise</term>
<term>Noise correlation</term>
<term>Noise covariance</term>
<term>Noise estimates</term>
<term>Noise parameterization</term>
<term>Noise parameters</term>
<term>Objective function</term>
<term>Optimization</term>
<term>Parameter</term>
<term>Parameterization</term>
<term>Parameterized</term>
<term>Partial derivatives</term>
<term>Perturbed</term>
<term>Piana</term>
<term>Piana agostinetti</term>
<term>Posterior</term>
<term>Posterior distribution</term>
<term>Posterior distributions</term>
<term>Posterior inference</term>
<term>Posterior probability</term>
<term>Posterior probability distribution</term>
<term>Probability density</term>
<term>Probability distribution</term>
<term>Proposal distribution</term>
<term>Proposal distributions</term>
<term>Proposal ratio</term>
<term>Rawlinson</term>
<term>Receiver function</term>
<term>Receiver function analysis</term>
<term>Receiver functions</term>
<term>Residual</term>
<term>Reversible jump algorithm</term>
<term>Sambridge</term>
<term>Second type</term>
<term>Seismic</term>
<term>Seismic structure</term>
<term>Seismic tomography</term>
<term>Seismol</term>
<term>Shear wave velocity</term>
<term>Station pairs</term>
<term>Surface wave dispersion</term>
<term>Surface wave dispersion data</term>
<term>Surface wave dispersion measurements</term>
<term>Surface waves</term>
<term>Synthetic data</term>
<term>Synthetic experiments</term>
<term>Synthetic noise</term>
<term>Teleseismic</term>
<term>Teleseismic receiver functions</term>
<term>Theory errors</term>
<term>Time series</term>
<term>Tomography</term>
<term>Transdimensional</term>
<term>Transdimensional inversion</term>
<term>True model</term>
<term>Uniform distribution</term>
<term>Upper mantle</term>
<term>Variable number</term>
<term>Variance</term>
<term>Velocity model</term>
<term>Velocity value</term>
<term>Velocity values</term>
<term>Vertical component</term>
<term>Visual inspection</term>
<term>Voronoi</term>
<term>Voronoi nuclei</term>
<term>Waveform</term>
<term>Wide range</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Australie</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Bruit</term>
<term>Sciences de la terre</term>
<term>Géophysique</term>
<term>Bruit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We present a novel method for joint inversion of receiver functions and surface wave dispersion data, using a transdimensional Bayesian formulation. This class of algorithm treats the number of model parameters (e.g. number of layers) as an unknown in the problem. The dimension of the model space is variable and a Markov chain Monte Carlo (McMC) scheme is used to provide a parsimonious solution that fully quantifies the degree of knowledge one has about seismic structure (i.e constraints on the model, resolution, and trade‐offs). The level of data noise (i.e. the covariance matrix of data errors) effectively controls the information recoverable from the data and here it naturally determines the complexity of the model (i.e. the number of model parameters). However, it is often difficult to quantify the data noise appropriately, particularly in the case of seismic waveform inversion where data errors are correlated. Here we address the issue of noise estimation using an extended Hierarchical Bayesian formulation, which allows both the variance and covariance of data noise to be treated as unknowns in the inversion. In this way it is possible to let the data infer the appropriate level of data fit. In the context of joint inversions, assessment of uncertainty for different data types becomes crucial in the evaluation of the misfit function. We show that the Hierarchical Bayes procedure is a powerful tool in this situation, because it is able to evaluate the level of information brought by different data types in the misfit, thus removing the arbitrary choice of weighting factors. After illustrating the method with synthetic tests, a real data application is shown where teleseismic receiver functions and ambient noise surface wave dispersion measurements from the WOMBAT array (South‐East Australia) are jointly inverted to provide a probabilistic 1D model of shear‐wave velocity beneath a given station.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
<li>Région Bretagne</li>
</region>
<settlement>
<li>Rennes</li>
</settlement>
<orgName>
<li>Université de Rennes 1</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Bodin, T" sort="Bodin, T" uniqKey="Bodin T" first="T." last="Bodin">T. Bodin</name>
</noRegion>
<name sortKey="Bodin, T" sort="Bodin, T" uniqKey="Bodin T" first="T." last="Bodin">T. Bodin</name>
<name sortKey="Bodin, T" sort="Bodin, T" uniqKey="Bodin T" first="T." last="Bodin">T. Bodin</name>
<name sortKey="Rawlinson, N" sort="Rawlinson, N" uniqKey="Rawlinson N" first="N." last="Rawlinson">N. Rawlinson</name>
<name sortKey="Sambridge, M" sort="Sambridge, M" uniqKey="Sambridge M" first="M." last="Sambridge">M. Sambridge</name>
<name sortKey="Tkal I, H" sort="Tkal I, H" uniqKey="Tkal I H" first="H." last="Tkal I">H. Tkal I</name>
</country>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Arroucau, P" sort="Arroucau, P" uniqKey="Arroucau P" first="P." last="Arroucau">P. Arroucau</name>
</region>
</country>
<country name="France">
<region name="Région Bretagne">
<name sortKey="Gallagher, K" sort="Gallagher, K" uniqKey="Gallagher K" first="K." last="Gallagher">K. Gallagher</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005568 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005568 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:31ED01A1129DBF445173C8C77E9ACB291D43297B
   |texte=   Transdimensional inversion of receiver functions and surface wave dispersion
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024